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Not all errors are created equal.

▪ In predictive models, high-confidence errors (i.e. unknown unknowns -
UUs) are often more consequential than low-confidence errors.
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▪ Debugging the model

▪ Preempting adversarial attacks

▪ Model evaluation

▪ Why should we identify UUs?



Previous approaches to identifying UUs

▪ Two general approaches currently exist. 

1. Crowdsourcing: candidates are proposed by workers
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Previous approaches to identifying UUs

▪ Two general approaches currently exist. 

1. Crowdsourcing: candidates are proposed by workers

▪ “Beat the Machine”:  Crowdsourcing task to submit webpages that will be 
misclassified by the model as hate-speech. Incentivized to find high confidence 
errors with bonuses (Attenberg et. al. 2015).
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Previous approaches to identifying UUs

▪ Two general approaches currently exist. 

2. Algorithm: candidates are selected algorithmically from a fixed set of 
instances
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Previous approaches to identifying UUs

▪ Two general approaches currently exist. 

2. Algorithm: candidates are selected algorithmically from a fixed test set

▪ Cluster all candidates (instances predicted with high-confidence) by their features and 
confidence scores.

▪ Candidates are selected from the most promising clusters based on their expected utility 
(Lakkaraju et al. 2017, Bansal et al. 2018).
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Weaknesses

Crowdsourcing approach: 

▪ Fails to explain the model’s behavior (i.e. how the model makes 
high confidence predictions).  The model is a black-box to 
workers, so it is difficult to infer how to “beat” it. 

Algorithmic approach:

▪ For models that are continually being adjusted, it may be 
inadequate to identify UUs from a fixed set.

▪ Fail to take advantage of human expertise.
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We design a crowdsourcing task called Contradict the Machine, in 
which decision rules can augment the ability of workers to 
generate UUs. 

Our hybrid approach



Our hybrid approach
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Phase 1:  
Decision Rule Learning

Phase 2:  
Contradict the Machine

R1: feature_1 AND feature_2 => high-confidence pred c

R2: feature_4 => high-confidence pred c

R3: feature_6 AND feature_7 => high-confidence pred c

R3: feature_7 AND feature_9 => high-confidence pred c

select candidate,
get covering ruleIf not UU, modify the instance to 

contradict the rule 

get model prediction on 
modified instance

Explain how high-confidence 
decisions are made

Search for UUs



Phase 1: Decision rule learning

▪ We seek to learn a surrogate model that explains how the predictive model makes 
high-confidence predictions to the critical class c.

▪ This surrogate model is a set of decision rules of the form 

feature_1 AND feature_3 AND … AND feature_n => high-confidence c prediction

E.g. spam classifier 

“free” AND “buy” AND “now” => high-confidence spam prediction

▪ Two desirable properties:

▪ Interpretability: human can determine the when a rule applies to an instance

▪ Decomposability: at most one rule applies to any instance
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Phase 1: Decision rule learning

▪ Data is discretized into instances predicted (1) or not predicted (0) to class c 
with high-confidence. 

▪ A decision tree is generated via CART algorithm with modified splitting 
criterion.

▪ Every path of the decision tree from root to leaf is traversed. The rules 
correspond to all paths to a leaf with a class 1 majority.
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Phase 2: Contradict the Machine

▪ We use the decision rules to search for UUs via a crowdsourcing task 
called Contradict the Machine (CTM). 

▪ The worker is given a candidate (instance predicted with high confidence 
to c)  and a rule that covers it. 

▪ They can take one of three possible actions:

▪ identify. Performed if the label is not 𝑐, since it is confirmed to be a UU.

▪ modify. Otherwise, the worker is challenged to modify the instance such that its 
label changes, while ensuring that it is still covered by the rule.  This makes a 
“contradictory” instance.

▪ reject. Performed if the worker is unable to modify the instance.
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Phase 2: Contradict the Machine

▪ To sequentially select the instance (and covering rule) to next 
present to the worker, rules are treated like arms of a multi-
armed bandit.

▪ Thompson sampling is used to trade off exploitation of the 
most promising rules with exploration.
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Experiments
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Datasets

▪ We evaluate our method by conducting a user study on Amazon 
Mechanical Turk. We train classifiers on three datasets:

1. Rotten Tomatoes movie reviews

▪ Reviews labelled as negative or positive.

2. Amazon Food reviews

▪ Reviews labelled as negative (1-2 stars) or positive (4-5 stars).

3. SMS text spam

▪ Text labelled as non-spam or spam.

PAGE  25



Datasets

▪ Following prior work, we induced bias in the training data to 
ensure that there were sufficient UUs to be discovered. This 
entailed:

1. Clustering the training data and removing data corresponding to a 
random cluster.

2. Biasing the class distribution by removing examples from the 
majority class (SMS text spam).
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Crowdsourcing interface
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User study

▪ The HIT was comprised of three sections:

▪ pre-study questionnaire (demographics information)

▪ CTM tasks (10 steps)

▪ post-study questionnaire (TLX + questions about the difficulty of the task).

▪ Base payment of $0.50, plus action payments. The identify and reject
costs were both set to $0.02, while modify cost was set to $0.20.

▪ Each classifier was evaluated over multiple HITs for a total of 300-500 
steps.
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Baselines

▪ We evaluated our approach (CTM) against several baselines:
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UUB: A re-implementation 
of the algorithm proposed 
by Lakkaraju et al. 

bandit algorithm bandit algorithm random

CTM-NoRule: A variant of CTM 
that does not present the 
worker with any rule that the 
modified instance must satisfy.  

CTM-Random: A variant of CTM 
that randomly selects instances 
to present to workers instead 
of the bandit algorithm.



Results
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Cumulative utility

▪ At each step, the utility is calculated by the utility for identifying a 
UU (+1) or not (0), minus the cost of the action taken by the 
worker at that step.
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Cumulative utility

▪ CTM performs better than UUB on all three datasets. The 
percentage increase in cumulative utility of CTM over UUB was 
67.5, 32.1 and 68.5 respectively.
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Cumulative utility

▪ Comparison of CTM with CTM-NoRule suggests that the 
rules are important, but their importance may vary between 
datasets, depending on the rule precision. 
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60.7%
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Cumulative utility

▪ Comparison of CTM with CTM-Random suggests that the 
bandit query strategy may not be important.
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Algorithm vs. worker contributions

▪ Breakdown of UUs discovered from the test set (i.e. algorithm proposed) and UUs 
generated by the worker (i.e. worker proposed).

▪ Both contributions are substantial, indicating the value of a hybrid approach. 
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UUs generated – common themes

▪ Changing the meaning of a word feature

▪ E.g. SMS text spam: “free” in the sense of cost vs. “free” as in available
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UUs generated – common themes
▪ Manipulating context

▪ E.g. modifying a review from calling the product “great” to  saying that 
“indistinguishing people“ think the product is “great”

▪ E.g. SMS text spam: putting the entire spam text in quotes and complaining how 
much you dislike receiving such messages.
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Summary

▪ This work proposes a hybrid approach to identifying UUs, in which 
candidates are generated by both the algorithm and human workers. 

▪ To combine these approaches, we propose learning a set of decision rules
that explain how high confidence predictions are made. 

▪ We design a crowdsourcing task called Contradict the Machine, in which 
these decision rules can augment the ability of workers to generate UUs. 

▪ Experimental results suggest that this method can outperform existing 
approaches.
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Future directions

▪ Adapting interface to other data types 

▪ Tabular data

▪ Longer text

▪ Adding mechanisms to take advantage of worker expertise
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