
The Seventh AAAI Conference on Human
Computation and Crowdsourcing (HCOMP-19)

A Hybrid Approach to Identifying Unknown Unknowns of Predictive Models

Colin Vandenhof
David R. Cheriton School of Computer Science

University of Waterloo
Waterloo, Canada

cm5vande@uwaterloo.ca

Abstract

When predictive models are deployed in the real world, the
confidence of a given prediction is often used as a signal of
how much it should be trusted. It is therefore critical to iden-
tify instances for which the model is highly confident yet in-
correct, i.e. the unknown unknowns. We describe a hybrid ap-
proach to identifying unknown unknowns that combines the
previous crowdsourcing and algorithmic strategies, and ad-
dresses some of their weaknesses. In particular, we propose
learning a set of interpretable decision rules to approximate
how the model makes high confidence predictions. We devise
a crowdsourcing task in which workers are presented with a
rule, and challenged to generate an instance that “contradicts”
it. A bandit algorithm is used to select the most promising
rules to present to workers. Our method is evaluated by con-
ducting a user study on Amazon Mechanical Turk. Exper-
imental results on three datasets indicate that our approach
discovers unknown unknowns more efficiently than the state-
of-the-art.

Introduction

Predictive models are increasingly being deployed in the real
world, with applications ranging from image annotation to
autonomous driving. With more sophisticated learning algo-
rithms, improvements to computational resources, and ac-
cess to larger data sets, the accuracy of these models has
increased. However, they can still make mistakes. As more
reliance is placed on such systems, it becomes increasingly
important to characterize its errors.

Confidence scores have traditionally been used to indi-
cate the degree of certainty of a model in its prediction.
This signal can be misleading when the model makes a high
confidence prediction that is incorrect. Such instances have
been termed the unknown unknowns (UUs). Attenberg et al.
(2011; 2015) observed that UUs are often present as sys-
tematic errors in particular regions of the feature space, so-
called blind spots of the model. Blind spots generally arise
due to discrepancies between the distribution of training data
and the target distribution, a problem known as dataset shift
(Ben-David et al. 2006). These discrepancies can occur for

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

various reasons: there may be systematic biases in the train-
ing data, the target distribution may shift over time, or a
model may be applied to new domains (i.e. transfer learn-
ing).

UUs are especially important to identify in high-stakes
settings like healthcare and law. Decision makers may use
the model’s confidence as a basis for how much to trust a
given prediction; hence, any incorrect predictions that are
made with high confidence can have serious consequences.
There are many other cases in which identifying the UUs of
a model is valuable. In adversarial settings, the identification
of UUs may be used to highlight system vulnerabilities and
prevent attacks. A classic example is spam filtering, in which
an adversary tries to generate spam messages that will be
misclassified with high confidence by the spam filter, and
successfully pass into the recipient’s main inbox. To defend
against such attacks, UUs must be identified preemptively
so that corrections can be made to the model.

Two general approaches currently exist for identifying
UUs. The first is a crowdsourcing approach, in which can-
didates are proposed by workers. The second is an algo-
rithmic approach, in which candidates are automatically se-
lected from a fixed set of test instances. This paper intro-
duces a hybrid method that combines both approaches and
addresses some of their weaknesses. A key aspect of our
method is learning a set of interpretable rules that explain
how the classifier makes high confidence predictions. Then,
we sequentially select a rule, choose a candidate instance
from the test set that is covered by that rule, and present it to
a crowd worker to label. If it is not already a UU, then the
worker is challenged to modify the instance and turn it into
a “contradictory” example - an instance that is still covered
by the rule, yet whose ground truth label is now different.
To decide which rule to next present to a worker, we devise
a Bayesian bandit algorithm, in which the rules are the arms
of the bandit, and rules that are more likely to yield UUs are
queried more often.

We evaluate our approach on three datasets on Amazon
Mechanical Turk. Results indicate that our hybrid approach
substantially outperforms the purely algorithmic approach.
Moreover, while the crowdsourcing task is challenging, it
does not overburden workers in terms of time or workload.

180

Workers employ many creative and surprising techniques for
generating contradictory examples, and the generated UUs
help to characterize blind spots of the model.

Related Work
The two broad class of methods for identifying UUs—
crowdsourcing and algorithms—differ in how candidates are
chosen: proposed by workers versus selected from a fixed set
of test instances.

In the crowdsourcing approach, labelled candidates are
proposed by workers, and verified as UUs by obtaining the
model’s prediction and confidence score. Attenberg et al.
(2011; 2015) present such a crowdsourcing system, which
they call “Beat the Machine” . They examine a classifier for
hate-speech in web pages. Workers receive a small base pay-
ment for submitting any valid URL, but if associated web-
page is a hate-speech page that has been incorrectly classi-
fied as benign, they receive a bonus payment that is propor-
tional to the confidence of the model. The authors find that
this scheme incentivizes workers to discover UUs.

There are some limitations to this approach. First, the
model is presented as a black-box to the workers. They are
given no information about the model’s inner workings, so
it is naturally difficult to infer how to “beat” it. To infer any-
thing about its behavior, they must submit many examples
and learn through trial-and-error. This approach can be very
costly in the crowdsourcing setting since workers are paid on
a per-submission basis. Furthermore, it may be infeasible for
humans to build an accurate mental model if the classifier is
complex. In this work, we propose “opening” the black box.
We learn an interpretable surrogate model of how high con-
fidence predictions are made, and then present it to workers.

While “Beat the Machine” relies on workers finding pre-
existing examples from the internet, we recognize that in
many domains, it is impractical or impossible to find rel-
evant examples via internet search. As an alternative, we
propose a framework in which workers are provided with
a template instance that they can modify to produce a new
candidate.

The second avenue of research into identifying UUs is al-
gorithms. Lakkaraju et al. (2017) propose an algorithm for
identifying UUs, given a test set of examples with predicted
labels and confidence scores, and an oracle to query for the
true labels. Their approach has two steps. First, “Descriptive
Space Partitioning” is performed to cluster all high confi-
dence instances by both their features and confidence scores.
Then, each cluster is treated as an arm in a multi-armed
bandit, and candidates are queried from the most promis-
ing clusters based on their estimated mean utility. Bansal
and Weld (2018) extend this work by proposing a coverage-
based utility model that gives higher utility to the set of UUs
which provide higher coverage of the test data. They outline
a greedy algorithm for selecting candidates.

Although these algorithmic approaches are suitable for a
fixed test set, we wish to identify UUs encountered by pre-
dictive models in the open world. Deployed models must
be continually tested on new data, so the identification of
UUs in a fixed set is often not adequate. We avoid this
problem by employing workers to generate new instances.

Like the crowdsourcing approach, current algorithmic ap-
proaches also fail to explicitly learn the model’s behavior
(i.e. how the model makes high confidence predictions). We
show that learning a surrogate model and presenting it to
workers can make the discovery of UUs markedly more ef-
ficient.

Problem Statement
We begin with the premise that a predictive model deployed
in the wild is typically a black-box, for which neither the
training data nor the details of the learned function are acces-
sible. For any instance x, the model M provides a predicted
label, ŷ ∈ C, where C is the set of classes, and a confi-
dence score s ∈ [0, 1]. We define a UU as an instance that
is predicted incorrectly, ŷ �= y, and the model’s confidence
s is above some threshold τ , s > τ . For simplicity, we tar-
get UUs of some critical class c for which false positives are
particularly costly and need to be identified. In other words,
we are interested in those UUs for which ŷ = c �= y.

We also have access to a set of (unlabelled) test instances
that is a subset of all possible instances, Xtest ⊆ X . To
obtain the label, the system can query a worker. In particular,
the system queries only those instances in Xcand ⊆ Xtest

which are valid UU candidates:

Xcand = {x|x ∈ Xtest, ŷ = c, s > τ} (1)
Given a particular query instance xi ∈ Xcand, the worker

knows the label yi and has three actions available:
1. UU identification: if yi �= c, return identify, (xi, yi)

2. modification: if yi = c, modify xi to produce some new
instance xj ∈ X such that yj �= c, and return
modify, (xj , yj)

3. rejection: if yi = c, but the worker is unable to modify xi

to produce some new instance xj ∈ X such that yj �= c,
return reject, (xi, yi)

We will provide details of the crowdsourcing interface
in the Methodology section, and explain more specifically
how each of these actions is performed. We assume that
each of the three actions is associated with a fixed cost:
CostModify, CostIdentify, and CostReject. In addi-
tion, we assume that the discovery of a UU has unit utility.
The utility function can then defined as the utility of discov-
ering a UU, minus the cost of the action performed:

u(qt) = disc(qt)− cost(qt) (2)
Here, disc(qt) is a function that returns 1 if the query qt

resulted in a UU discovery and 0 otherwise. cost(qt) is the
cost of the action performed by the worker for that query.
Note that the identify action always results in a UU dis-
covery, while the reject action never results in a UU dis-
covery. If the modify action is performed, the returned in-
stance must be inputted into the model M to obtain its pre-
dicted label and confidence, to determine if it is a UU or not.

The objective is to find the sequence of queries that max-
imizes the total utility over n steps,

∑n
t=1 u(qt). This util-

ity model is analogous to the one proposed by Lakkaraju et
al., aside from costs for the modify and reject actions,
which are non-existent in their setting.

181

Methodology

Our method for identifying UUs has two phases. In the
first phase, we learn a surrogate model that explains how
the black-box model M generates high confidence predic-
tions of the critical class. This surrogate model is a set
of interpretable decision rules. The second phase entails a
crowdsourcing task in which workers are queried. Similar to
Lakkaraju et al. (2017), we formulate the querying proce-
dure as a multi-armed bandit, and develop a Bayesian bandit
algorithm to sequentially choose rules to present to workers.

Phase 1: Decision Rule Learning

First, we seek to learn a surrogate model S, which takes
some instance xi ∈ X as input, and outputs 1 if it predicts
that instance will be given a high confidence prediction to
the critical class by M , and 0 otherwise.

There are two desirable properties for the surrogate model
S. First, it should be interpretable, in the sense that a hu-
man can readily determine whether S will output 1 or 0
for a particular instance. This notion of interpretability is
treated as a design principle, rather than a property we at-
tempt to prove experimentally. The second desirable prop-
erty is for the model to be decomposable, meaning that S
can be broken down into components that each make pre-
dictions on disjoint subsets of the possible inputs X . Given
such a model, a human can readily determine the model out-
put for any instance using the single component of the model
that covers it.

These two properties can be fulfilled by generating a set
of decision rules. The left-hand side of the rule is a conjunc-
tion of predicates. Each predicate is of the form (attribute =
value), where the attribute is an interpretable feature, and the
value is 1 or 0 to indicate the presence or absence of that fea-
ture. The right hand side of the rule is always 1, indicating
a high confidence prediction to the critical class by M . For
example, if the critical class is positive movie reviews, a rule
might take the form best=1 AND bad=0 => 1. To en-
courage interpretability, we favor short rules and set Lmax

to be the maximum number of predicates in any rule. To
ensure decomposability, the rules must be non-overlapping,
such that each instance x is covered by at most one rule.

We can generate such a rule set by applying the Classifi-
cation And Regression Tree (CART) algorithm (Breiman et
al. 1984). We first obtain the prediction and confidence of
the model M for instances in Xtest. Then, we discretize the
output into instances predicted (1) or not predicted (0) to the
critical class with high confidence:

ŷi
′ =

{
1, if si > τ, ŷi = c

0, otherwise
(3)

The dataset D = (Xtest, Ŷ ′) is then used to construct a
decision tree.

CART uses Gini impurity as the criteria for choosing the
next split to perform while constructing the decision tree.
Gini impurity gives the likelihood that an element from some
node would be incorrectly labelled if it was randomly la-
belled according to the distribution of class labels at that
node. Since we are only interested in rules that explain high

Precision Recall F1 Score
Pang2005 60.7 59.5 60.1
McAuley2013 79.2 75.8 77.4
Almeida2011 84.6 76.7 80.5

Table 1: Performance of the decision rules for three datasets
on a validation set.

confidence critical class predictions, we only compute Gini
impurity with respect to instances with ŷ′ = 1:

IG,1 = p1 · (1− p1) (4)

where p1 is the fraction of instances in the set with ŷ′ = 1.
Finally, we convert the decision tree into a set of if-then

rules for high confidence predictions to the critical class. Ev-
ery path of the decision tree from root to leaf is traversed.
The rules correspond to all paths that end on a leaf with a
class 1 majority. Each node along the path is inserted as a
predicate in the decision rule.

We perform a grid search over several decision tree hy-
perparameters (maximum tree depth, minimum samples at
leaf node) and choose the values that maximize the F1 score
over 10-fold cross validation. We choose F1 score because
the rule set should ideally have both high recall and high
precision. High recall ensures that a large proportion of the
UU candidates in the dataset are covered by the rule set,
while high precision ensures that a large proportion of the
instances covered by the rule set are actually UU candidates.
In our search over the optimal tree depth, we only search for
tree depths under Lmax to ensure that the rules are short
enough to be interpretable. This constraint also helps to mit-
igate overfitting. Performance of the decision rules on three
datasets is reported in Table 1.

Phase 2: Contradict the Machine

In the second phase, we use the surrogate model to search
for UUs via a crowdsourcing task that we refer to as Contra-
dict the Machine (CTM). For this task, the worker is given
an instance from Xcand that is covered by a decision rule.
If the label is not the critical class, it is confirmed to be a
UU and the worker returns the instance (identify action).
Otherwise, the worker is given a challenge – modify the in-
stance such that its label changes, while still ensuring that it
is covered by the rule (modify action). The result is a con-
tradictory example - one that according to the decision rule,
should be confidently predicted by M to the critical class,
yet whose label is not the critical class. The worker then re-
turns the modified instance. In the case that the worker is
unable to generate such an example, a third reject ac-
tion is available to the worker. To select which instance and
rule to present to the worker, we follow a similar framework
as Lakkaraju et al. (2017). However, instead of needing to
explicitly cluster instances in Xcand, we find that instances
can be be effectively clustered by the decision rule cover-
age alone. The instance-rule pair to be presented to workers
is selected by a multi-armed bandit algorithm that treats the
rules as arms of the bandit.

182

KMB DRC DRC (w. uncovered)
Pang2005 0.020 0.081 0.066
McAuley2013 0.156 0.170 0.229

Almeida2011 0.101 0.113 0.107

Table 2: Normalized mutual information for k-means-both
(KMB) and decision rule clustering (DRC). DRC (w. un-
covered) includes an additional cluster for all uncovered in-
stances. Higher scores suggest more informative clusters.

Decision Rule Clustering Lakkaraju et al. (2017) de-
scribe an algorithm called k-means-both for generating in-
formative clusters in Xcand with respect to UUs. This
method works by clustering instances twice with the k-
means algorithm, first by the confidence scores given by M ,
then by their features. The optimal number of clusters is se-
lected via the elbow method.

In contrast, we show that instances in Xcand can be
effectively clustered by decision rule coverage. This sim-
ple method, which we call decision rule clustering, entails
grouping instances together that are covered by the same
rule.

To compare these approaches, we determine the true dis-
tribution of UUs within each clustering, and then compute
normalized mutual information (NMI), which quantifies the
amount of information gained about whether an instance is
a UU by knowing the cluster it belongs to. Normalization
allows for a fair comparison between methods that produce
different numbers of clusters. Our results show that deci-
sion rule clustering, with and without a cluster for orphaned
instances, attains a higher NMI score than k-means-both
(Table 2). This is a somewhat surprising result, since the
main purpose of the decision rules is as a surrogate model
to present to workers. The fact that UUs can be effectively
clustered by decision rule coverage is an added benefit.

Bayesian bandit Next, we present a multi-armed bandit
algorithm to intelligently select decision rules to present to
workers in the CTM task. We compute statistics about each
rule by the set of instances that it covers (i.e. decision rule
clustering). In particular, we estimate the expected utility of
each rule, as described below (Equation 5). Then, we choose
the rule with the highest expected utility, randomly sample
an instance from Xcand that is covered by that rule, and
present that rule-instance pair to the worker. This process
repeats for n steps.

The expected utility of each rule is computed as follows:

E[u(qt)] = P (At = identify) · (1− CostIdentify)

+ P (At = reject) · (−CostReject)

+ P (At = modify ∧ UUt) · (1− CostModify)

+ P (At = modify ∧ ¬UUt) · (−CostModify) (5)

Here, At is the action taken by the worker at time t, and
UUt is a boolean variable indicating whether a UU was dis-
covered or not.

In essence, Equation 5 specifies the expected utility by
considering all possible worker actions. If the instance is

already a UU (i.e. not from the critical class), the worker
would perform the identify action. The probability of
the identify action is the same as the probability that the
instance xt is not from the critical class, given it is covered
by rule R (denoted as xt ∈ R), i.e.,

P (At = identify) = P (yt �= c|xt ∈ R) (6)

Otherwise, either the modify or reject action is per-
formed. We maintain some probability P (rej) that the
worker will reject a critical class instance instead of mod-
ifying it. Thus,

P (At = reject) = (1−P (yt �= c|xt ∈ R))·P (rej) (7)

If the critical class instance is not rejected, the only re-
maining possibility is that the instance is modified. For the
modify action, the probability that a UU is discovered de-
pends on the precision of the rule over the set of all possible
modified instances. Thus, we obtain:

P (At = modify ∧ UUt) = (1− P (yt �= c|xt ∈ R))

·(1− P (rej))

·P (ŷmod,t = c ∧ smod,t > τ |xmod,t ∈ R)

(8)

P (At = modify ∧ ¬UUt) = (1− P (yt �= c|xt ∈ R))

·(1− P (rej))

·(1− P (ŷmod,t = c ∧ smod,t > τ |xmod,t ∈ R))
(9)

Hence, there are three probabilities that need to be es-
timated: P (rej), P (yt �= c|xt ∈ R), and P (ŷmod,t =
c ∧ smod,t > τ |xmod,t ∈ R). For P (rej), we assume a
fixed probability that any given worker will reject a critical
class instance instead of trying to modify it. This probability
is estimated by the observed frequency of rejections.

The remaining two probabilities are rule-specific. P (yt �=
c|xt ∈ R) represents the probability that an instance cov-
ered by rule R will already be a UU. We begin with a uni-
form prior, Beta(1, 1) and update our prior according to the
observed counts of input instances covered by R that are
UUs/non-UUs. P (ŷmod,t = c ∧ smod,t > τ |xmod,t ∈ R)
represents the probability that the modified example will
be predicted to the critical class with high confidence. We
begin with the prior Beta(aval, bval), where aval and bval
represent the counts of covered instances in the validation
set that are predicted, and not predicted, to the critical class
with high confidence. We update the priors according to the
observed counts of modified instances covered by rule R
that are UUs/non-UUs. To trade off the exploitation of the
most promising rules with exploration, we employ Thomp-
son sampling (Thompson 1933). At each step, we draw a
single sample from each of the posteriors to obtain the prob-
ability estimates.

Experiments

We evaluated our method on three datasets:
Pang2005 (Pang and Lee 2005): This dataset is comprised

of 10k movie review snippets from Rotten Tomatoes. Each
sentence is classified by sentiment as negative or positive
(the critical class).

183

McAuley2013 (McAuley and Leskovec 2013): This
dataset contains∼500k reviews from the Amazon Fine Food
Store, labeled as negative (1 or 2 star ratings) or positive (the
critical class – 4 or 5 star ratings). Only short (≤ 280 char-
acters) reviews are used.

Almeida2011 (Almeida, Hidalgo, and Yamakami 2011):
This dataset is comprised of ∼5k SMS text messages which
are classified as non-spam or spam (the critical class).

A logistic regression classifier was used as the black-box
model, trained on a bag-of-words representation of the text.
Following prior work, we induced bias in the training data
to ensure that there were sufficient UUs to be discovered
(Lakkaraju et al. 2017). We follow the same procedure for
inducing bias – a decision tree is learned on the training data,
and all examples from a randomly chosen leaf are deleted.
For Almeida2011, we additionally bias the training data by
making the distribution of spam and non-spam balanced (the
dataset otherwise skews heavily towards non-spam).

Baselines

The Contradict the Machine (CTM) method was evaluated
against several baselines.
• UUB: A re-implementation of the bandit algorithm pro-

posed by Lakkaraju et al. We test versions using k-means-
both (UUB-KMB) and decision rule clustering (UUB-
DRC).

• CTM-NoRule: A variant of CTM that does not present
the worker with any rule that the modified instance must
satisfy.

• CTM-Random: A variant of CTM that randomly selects
instance-rule pairs to present to workers instead of the
Bayesian bandit algorithm.

Crowdsourcing Interface

The task interface is shown in Figure 1. At the top of the
page is the text of the original instance. The rule is repre-
sented by a set of words that must be included, and a set
of words that must be excluded. There are three buttons at
the bottom of the page that correspond to the three possi-
ble actions that workers can take. The worker can select the
identify button if the text is already not the critical class.
Otherwise, the worker can attempt to modify the text so that
it is no longer the critical class, and presses the modify but-
ton if successful, and the reject button otherwise. When
modifying text, the modified text is validated in real-time,
with a graphical indicator showing whether the rule is satis-
fied and, if not, which conjunct(s) are unsatisfied. The CTM-
NoRule interface is similar, except that no rule is displayed,
and the user is free to make any modifications to the text that
they wish.

User Study

To evaluate our Contradict the Machine approach, we con-
ducted a user study on Amazon Mechanical Turk. The
HIT was comprised of three sections: pre-study question-
naire, CTM tasks, and post-study questionnaire. We required
workers to have at least 1000 approved HITs with a 97% or
higher approval rate.

Figure 1: Crowdsourcing interface for a sample text from
Pang2005. In this case, the label has been successfully mod-
ified from positive (the critical class) to negative. However,
the rule is not satisfied. Words highlighted in green represent
satisfied conjuncts, and in red, unsatisfied conjuncts.

All workers were required to fill out a consent form be-
fore starting the HIT. Then, demographics information was
collected in the pre-study questionnaire. Next, a block of 10
CTM tasks was given to each participant. Finally, a post-
study questionnaire was administered. Workers were asked
to rate the difficulty of labelling and modifying the text, 1
being ’not difficult at all’ to 7 being ’very difficult’. The
Raw-TLX Scale (RTLX) was also administered to measure
workload (Hart 2006).

Workers were given a base payment of $0.50, and bonus
payments for each action that corresponded to their rela-
tive cost. The CostIdentify and CostReject were both set
to $0.02, while CostModify was set to $0.20. The costs
reflected the estimated time and effort required to perform
each action in a crowdsourcing setting.

We evaluated CTM for 500 steps (corresponding to ∼50
workers) across all conditions and datasets, with the ex-
ception of Almeida2011, which we evaluated for 300 steps
(∼30 workers) due to a smaller number of candidate in-
stances available to query.

Results

We report on both the cumulative utility of our method and
the experience of workers performing the CTM task. Our
baseline for assessing cumulative utility is the previous al-
gorithmic approach, UUB. Since UUB queries consist of
only labelling, and all of the datasets were already labelled,
this algorithm could be evaluated entirely in simulation. La-
belling is 100% accurate in simulation, so to ensure a fair
comparison, we also assume perfect labelling when evaluat-
ing CTM.

184

Figure 2: Performance of the CTM and baselines in terms of cumulative utility. The y-axis is the utility, and the x-axis is the
number of worker queries. Results for CTM are obtained from a user study on Amazon Mechanical Turk (1 run), while results
for UUB are obtained in simulation (average of 100 runs).

% improvement
Pang2005 67.5
McAuley2013 32.1
Almeida2011 68.5

Table 3: Percentage increase in cumulative utility of CTM
over UUB-KMB, found by comparing areas under the cu-
mulative utility curves.

Utility

The cumulative utility achieved by CTM and baselines is
shown in Figure 2. On all three datasets, CTM and its vari-
ants tended to perform better than UUB. Table 3 shows the
percentage increase in utility of CTM. These results sug-
gest that CTM is able to successfully elicit UUs from work-
ers, and that the added costs of modifying instances is out-
weighed by the number of UUs that the workers are able to
successfully generate.

Figure 3 shows the breakdown of UUs discovered from
the test set (i.e. algorithm proposed) and UUs generated by
the worker (i.e. worker proposed). Both contributions are
substantial, indicating the value of a hybrid approach.

Comparison of CTM with CTM-NoRule suggests that
the rules are important, but their importance may vary be-
tween datasets. Performance is vastly improved with rules
on the McAuley2013 and Almeida2011 datasets. On the
other hand, performance is comparable on Pang2005. This
may be attributed to the fact that the Pang2005 rule set has
the poorest precision (Table 1), and therefore is not as help-
ful in the task.

The difference in performance between CTM and
CTM-Random is small across all datasets, with CTM
slightly outperforming CTM-Random in the Pang2005 and
McAuley2013, and vice versa on Almeida2011. The only
difference between CTM and CTM-Random is the querying
strategy — the crowdsourcing task facing workers is identi-
cal. However, we find that the number of reject actions is
quite variable, with a small number of workers accounting
for a large number of the reject actions. Indeed, a higher

Figure 3: UUs identified from the test set (algorithm pro-
posed) and generated by the worker (worker proposed) using
CTM.

rejection rate is associated with lower performance when
comparing CTM and CTM-Random across all datasets. It
appears that the large variation in rejection rate may obscure
the effect of the querying strategy.

Worker Experience

We used RTLX responses to assess the workload of users
in each task variant (CTM, CTM-NoRule) and dataset. A
two-factor ANOVA using Type-3 SS was performed to test
the influence of task and dataset on the overall workload.
Neither factor was found to have a statistically significant
interaction with overall workload. To probe further into
workload differences, two-factor ANOVAs were performed
on each RTLX subscale: mental demand, physical demand,
temporal demand, overall performance, effort, and frustra-
tion level. Statistical significance was only found between
task and frustration level (F (2, 363) = 11.641, p < 0.001).
A T-test revealed that the frustration level of CTM-NoRule
(M = 32.6, SD = 26.9) was statistically significantly
lower (t(244) = −3.088, p < 0.01) than CTM (M =
43.7, SD = 29.5). To evaluate the difficulty of labelling
and modifying the text across tasks and datasets, two-factor
ANOVAs were performed as above. There was no statis-

185

Figure 4: Sample UUs proposed by workers for (A)
Pang2005, (B) McAuley2013, and (C) Almeida2011. On the
left is the rule, indicating which words must be included and
excluded. In the center is the original text, and on the right
is the modified text. Deletions are marked in red, insertions
in green, and mandatory words to include in blue.

tically significant interaction between these factors and la-
belling difficulty or modifying difficulty.

Taken together, these results indicate that the task is chal-
lenging, but does not overburden workers in terms of work-
load. These findings are consistent across all datasets. The
addition of rules does increase worker frustration, which is
not surprising since they constrain what the workers are al-
lowed to submit. However, the overall workload is not sig-
nificantly different whether workers are given rules or not.

UUs generated

We noticed some commonalities in how workers generated
UUs. Since workers were provided with a instance that satis-
fied the rule, it was common for workers to keep much of the
text the same, and make only the minimal modifications re-
quired to change the ground truth. This behavior is advanta-
geous for the purposes of discovering UUs: if the original in-
stance is predicted with high confidence to the critical class,
a minimal modification is unlikely to change this prediction,
so the change of ground truth will likely turn it into a UU.
An exception to this behavior is found with Almeida2011
— in this case, less of the original text was preserved by
workers, since changing a SMS text from spam to non-spam
generally required much of the content of the message to be
changed. This can be observed in Figure 4C.

Workers devised creative and surprising strategies for
modifying examples under the rule constraints. Often, work-
ers exploited the fact that a word feature could have mul-
tiple meanings. The example in Figure 4C shows such a
modification. The rule states that the classifier will predict
any instance that includes “free” and “with”, and excludes
“call”, “mobile”, “reply” and “www” as spam with high con-
fidence. Clearly, this rule is sensible if “free” is used in the
sense of cost, since SMS spam often advertises free prod-

ucts or services. However, when modifying the instance, the
worker changes “free” to mean “available”, and in doing so,
changes the instance to a plausible non-spam message.

Another strategy was to not change the meaning of the
word features, but instead to use them in a different con-
text. The example shown in Figure 4B illustrates this idea.
The rule requires that the word “great” be included in the
negative review. Rather than calling product itself great,
the worker modifies the context so that it is “indistinguish-
ing people” who think the product is great. In extreme
cases, almost the entire modified instance was identical to
the original, with a slight shift of context to change the
ground truth. For example, when modifying a spam text
from Almeida2011, one worker put the entire text in quotes,
and added a short message that explains to their friend how
much they dislike receiving spam like the one quoted.

Conclusion

Two avenues of research have emerged for discovering the
UUs of a predictive model. In the crowdsourcing approach,
it is the humans who suggest candidate UUs. In the algo-
rithmic approach, it is an algorithm that suggests candidate
UUs. This work proposes a hybrid approach, in which candi-
dates are suggested by both the algorithm and human work-
ers. To combine these approaches, we propose learning a set
of interpretable decision rules that explain how high con-
fidence predictions are made. We design a crowdsourcing
task called Contradict the Machine, in which these decision
rules can augment the ability of workers to generate UUs.
A Bayesian bandit algorithm is used to intelligently choose
which rules and instances to present to workers.

We show that this hybrid strategy outperforms the algo-
rithmic approach proposed by Lakkaraju et al. in terms of
cumulative utility. Both the worker-proposed and algorithm-
proposed UUs make substantial contributions to the overall
utility. Across all datasets, workers are able to complete the
task effectively, without being overburdened by workload.

There are some limitations to our implementation. The
crowdsourcing task was implemented for text datasets, but
would likely need to be redesigned to accommodate other
kinds of datasets (e.g. tabular datasets). In addition, the
length of text in the datasets we tested were fairly short.
This made it amenable to crowdsourcing since each task was
fairly simple and quick to complete. If our approach is to be
applied to longer and more complex instances (e.g. news ar-
ticles), strategies would need to be developed to make the
task more manageable. For example, it could be designed as
a collaborative task wherein multiple people work together
to modify the full text, or decomposed into smaller tasks that
can be completed individually.

The ideas presented in this paper represent a viable new
direction of research into identifying blind spots of predic-
tive models. There are various possible avenues for future
work. In addition to adapting this approach to other types of
data, it might be adjusted to suit other utility models, like
coverage-based utility (Bansal and Weld 2018). We could
also incorporate mechanisms for repeated labelling to take
account of human error. Finally, we could explore strategies

186

to make use of the specific domain knowledge and expertise
of workers.

References

Almeida, T. A.; Hidalgo, J. M. G.; and Yamakami, A. 2011.
Contributions to the study of SMS spam filtering: new col-
lection and results. In Proceedings of the 2011 ACM Sympo-
sium on Document Engineering, Mountain View, CA, USA,
September 19-22, 2011, 259–262.
Attenberg, J.; Ipeirotis, P. G.; and Provost, F. J. 2011. Beat
the machine: Challenging workers to find the unknown un-
knowns. In Human Computation, Papers from the 2011
AAAI Workshop.
Attenberg, J.; Ipeirotis, P.; and Provost, F. J. 2015. Beat the
machine: Challenging humans to find a predictive model’s
”unknown unknowns”. J. Data and Information Quality
6(1):1:1–1:17.
Bansal, G., and Weld, D. S. 2018. A coverage-based utility
model for identifying unknown unknowns.
Ben-David, S.; Blitzer, J.; Crammer, K.; and Pereira, F.
2006. Analysis of representations for domain adaptation.
137–144.
Breiman, L.; Friedman, J. H.; Olshen, R. A.; and Stone, C. J.
1984. Classification and Regression Trees. Wadsworth.
Hart, S. G. 2006. Nasa-task load index (nasa-tlx); 20 years
later. In Proceedings of the human factors and ergonomics
society annual meeting, volume 50, 904–908. Sage publica-
tions Sage CA: Los Angeles, CA.
Lakkaraju, H.; Kamar, E.; Caruana, R.; and Horvitz, E.
2017. Identifying unknown unknowns in the open world:
Representations and policies for guided exploration. 2124–
2132.
McAuley, J. J., and Leskovec, J. 2013. From amateurs
to connoisseurs: modeling the evolution of user expertise
through online reviews. In 22nd International World Wide
Web Conference, WWW ’13, Rio de Janeiro, Brazil, May 13-
17, 2013, 897–908.
Pang, B., and Lee, L. 2005. Seeing stars: Exploiting class
relationships for sentiment categorization with respect to rat-
ing scales. 115–124.
Thompson, W. R. 1933. On the likelihood that one unknown
probability exceeds another in view of the evidence of two
samples. Biometrika 25(3/4):285–294.

187

