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We consider the group G = Sy, X Sy, where S, and S}, are symmetric groups. Let
Y ={1,2,...,s} (the set of states) and X =W x H = {1,2,...,w} x {1,2, ..., h}
(the set of grid indices). Then Y X is the set of functions X — Y (mappings
from grid index to state).

By Pélya enumeration theorem, we have that:
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where |Y X /G| is the number of orbits under G and c(g) is the number of cycles
of group element g.

This result can be rewritten as a cycle index polynomial:

YX/G| = Z(G,s,s,...,s)

The cycle index polynomial of symmetric group S, EI is given by:
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The cycle index polynomial of the product S,, x Sp, E| is given by:
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where (I,m) and [I,m] denote the greatest common divisor and least common
multiple respectively.

Putting these results together, the final formula for [Y* /G| can be derived:
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